S37

N.M.R. STUDY OF FLUORINE MOBILITY IN THE FLUORITE-RELATED $Pb_{1-\,x}In_xF_{2+\,x}$ (0 < x < 0.25) SOLID SOLUTION

J. Senegas, B. Frit*

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351, Cours de la Libération, 33405 Talence Cédex (France)

J. P. Laval and B. Gaudreau

Laboratoire de Chimie Minérale Structurale, U.A., CNRS no 320, Faculté des Sciences, 123, Avenue Albert Thomas, 87060 Limoges Cédex (France)

C.W. and pulsed ¹⁹F N.M.R. have been performed at 30 Mhz on six samples of the fluorite-related solid solution $Pb_{1-x}In_xF_{2+x}$ (x = 0.025, 0.05, 0.12, 0.15, 0.20 and 0.25) in the temperature range $100^{\circ}C-200^{\circ}C$. A broad line, characteristic of "static" fluorine atoms is observed under a temperature TA. Between TA and TB thermal evolution of the signal exhibits a narrow line, growing at increasing temperature, at the expense of the broad one. Above TB only this narrow line, characteristic of the mobile fluorine atoms, subsists. Spin-lattice relaxation time T1 has been determined in the same temperature range, allowing the determination of the activation energy EA of the local motions. The know-ledge of TA and TB permits the determination of the long range conduction energy EB, and the surfaces ratio of the broad and narrow lines at a given temperature leads to the distribution of activation energies between EA and EB. A continuous repartition for x = 0.12 and x = 0.20 but discrete values of energies for the others compositions are observed. The mobility of fluorine is discussed in relation to the structure of these phases.